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Abstract: Smoke generated during surgery affects tissue visibility and degrades image quality,
affecting surgical decisions and limiting further image processing and analysis. Polarization is a
fundamental property of light and polarization-resolved imaging has been studied and applied
to general visibility restoration scenarios such as for smog or mist removal or in underwater
environments. However, there is no related research or application for surgical smoke removal.
Due to differences between surgical smoke and general haze scenarios, we propose an alternative
imaging degradation model by redefining the form of the transmission parameters. The analysis
of the propagation of polarized light interacting with the mixed medium of smoke and tissue
is proposed to realize polarization-based smoke removal (visibility restoration). Theoretical
analysis and observation of experimental data shows that the cross-polarized channel data
generated by multiple scattering is less affected by smoke compared to the co-polarized channel.
The polarization difference calculation for different color channels can estimate the model
transmission parameters and reconstruct the image with restored visibility. Qualitative and
quantitative comparison with alternative methods show that the polarization-based image smoke-
removal method can effectively reduce the degradation of biomedical images caused by surgical
smoke and partially restore the original degree of polarization of the samples.
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1. Introduction

In surgery, the production of surgical smoke, vapor and aerosols (referred to throughout as
‘smoke’) during tissue dissection not only reduces the tissue visibility, but also introduces an
error during further image processing and tissue diagnosis [1]. Therefore, it would be useful to
reduce the influence of surgical smoke, enhance image contrast and texture, and remove ‘noise’
in order to improve the biomedical image quality.

Polarization is a fundamental property applying to transverse waves that specifies the geomet-
rical orientation of the oscillations. According to the oscillation trajectory of the electric field in
the plane perpendicular to the propagation direction, polarized light can be divided into different
polarization states, namely linearly polarized light, circularly polarized light and elliptically
polarized light. Polarized light can be produced from the common physical processes that deviate
light beams, including scattering, absorption, refraction, reflection and birefringence. When
light propagates through a scattering medium, it undergoes multiple scattering with particles,
leading to randomization of its direction, phase, and polarization state compared with the incident
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light. Therefore, compared to general non-polarized optical imaging, polarization imaging can
detect additional or ‘hidden’ information from the way the scattering causes variation in the
polarization state of light. On this basis, polarization has been widely applied in many different
fields, including for biomedical imaging and tissue diagnosis [2–5].

Although the problem of surgical smoke removal is a recent topic of interest with only a
few published studies [6–10], it builds on the basis of the well-established outdoor image
dehazing research. Outdoor dehazing methods can be roughly divided into three main categories:
enhancement approaches, restoration approaches and learning approaches [11]. Enhancement
approaches seek to remove the haze (‘noise’) and improve the contrast by using image processing
algorithms including, for example, adaptive histogram equalization (AHE) [12], retinex [13],
wavelets [14], etc. These methods are simple and direct but their dehazing effect is limited.
Restoration approaches are usually based on various models that estimate the dehazed image
color and intensity from the image based on specific priors or assumptions, for example, based
on the dark channel prior [15], maximizing contrast [16], color lines prior [17], haze lines prior
[18,19], color attenuation prior [20] and polarization based [21–25], etc. These methods usually
have a better dehazed output, but the assumptions and prior information have limitations and
are not applicable in all scenarios. Learning approaches are recently becoming popular, some
of which still follow the idea of estimating model parameters, while others propose a trainable
end-to-end network for direct haze-free output [26,27]. However, learning approaches need
advanced equipment, specific datasets and a lot of training data and time.

Even though there are examples of polarization imaging in outdoor scenes such as for foggy
days [21], underwater imaging [22–25], and for biomedical image processing and tissue diagnosis
[2–5], there are currently neither related research about polarization based surgical smoke removal,
nor polarized surgical smoke datasets [1]. In this paper, we propose a polarization-based smoke
removal method for biomedical images. We analyzed and simulated the propagation of polarized
light in a mixed medium, and implemented the polarization difference method to estimate the
transmission parameters of the smoke. Real experiments were performed to verify the proposed
method, and qualitative and quantitative results show that our method effectively reduced the
degradation of biomedical images caused by surgical smoke and partially restored the original
degree of polarization of the samples. The proposed method has advantages of simplicity, speed
and effectiveness, without a requirement for extensive datasets or training process. Medical
images can be restored from the effect of surgical smoke in real time.

The remainder of this paper is organized as follows. In Sec. 2, the general image degradation
model is introduced and a redefined polarization-based image degradation model is proposed. In
Sec. 3, the propagation of polarized light is analyzed and simulated and the detailed process
of parameter estimation from smoke data is proposed, including the polarization difference
calculation for the estimation of transmission. Then, in Sec. 4, the experimental results and
qualitative and quantitative analysis are presented and finally some conclusions are drawn in Sec.
5.

2. Model and simulation

2.1. General image degradation model

In large-scale scattering media such as atmospheric and underwater environments, a common
general outdoor image degradation model is [15]:

I(x) = J(x)t(x) + A(∞)(1 − t(x)), (1)

where the two terms represent the direct transmission and scattered air-light, respectively. I and J
describe the intensity of the haze and haze-free image, respectively, x is a pixel in the image,
A(∞) denotes the atmospheric radiance at an infinite distance that scatters into the imaging path,
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t is the medium transmission rate which describes the proportion of radiance attenuation. The
transmission rate t can be expressed as:

t(x) = e−βd(x), (2)

when the medium extinction coefficient β is depth invariant and d refers to the scene depth.

2.2. Polarization-based Image degradation model

The image degradation model introduced above is applicable to a wide range of media where
the estimated transmission map is related to the scene depth and haze density does not vary
extensively across the scene. However, in a local, limited depth range, some definitions of the
parameters of the degradation model should be modified. Depth information is independent from
the attenuation of signal transmission t, because the depth of the local area is almost the same.
Instead, the transmission rate t is determined by the optical depth of the local smoke τ, i.e. the
higher the concentration of smoke, the lower the transmission rate. Therefore, we redefine the
transmission t as:

t(x) = e−βτ(x), (3)

Correspondingly, A(∞) denotes the intensity of ambient light with infinite optical depth,
meaning that the smoke is heavy enough that no object radiance can be received through the
smoke. Therefore, the polarization-based smoke removal model in a specific polarization state
can be rewritten as:

Ipol(x) = Jpol(x)e−βτ(x) + Apol(∞)(1 − e−βτ(x)), (4)

2.3. Propagation of polarized light in a medium

Before developing solutions to estimate parameters of the degradation model and remove the
smoke, it is important to understand how the polarized light interacts with the biological object
and the smoke. In general, for surgical imaging the illumination must travel through the smoke
layer, with photons then scattered by the object being imaged in reflection mode. As the light
propagates into the scattering medium, its direction, phase, and polarization state become
randomized due to multiple scattering [28,29]. The characteristics of the resulting scattered
polarized light strongly depend on different parameters, such as the medium particle size and
density, the initial polarization state, the wavelength, and the depth, among others [29,30].

Ideally, the scene would be simplified as a double layered scattering medium, with an upper
layer of smoke and a deeper layer of tissue, as shown in Fig. 1. For linear polarization illumination,
the superficial smoke layer, as indicated in the orange semicircle area in Fig. 1, maintains the initial
polarization, which means the backscattered polarized light contains a substantial component in
its original polarization state, while the deeper layers contain a multiply-scattered component
[28,31]. In order to study the propagation of polarized light in the medium under different
illumination and medium conditions, simulation experiments were completed with a Polarized
Monte Carlo program [32,33]. Polarized Monte Carlo provides a solution for understanding
the propagation of polarized photons in the medium. It can sequentially track the movement
of photons in the medium, and can realize the update of the photon’s polarization state after
each movement. The detailed Polarized Monte Carlo modeling method can be found in the
supplemental document. As surgical smoke consists of particles with diameters mostly in the
range from 0.01 µm to 6.0 µm, depending on the type of electrocauterized tissue and surgical
tool [34,35], we chose two particle diameters, 0.2 µm and 6.0 µm. The scattering coefficient
(expressed as a number proportional to the amount of photons scattered per distance) is a measure
of the ability of particles to scatter photons out of a beam of light and it is determined by the
particle diameters, medium density, medium relative refractive index and incident wavelength
[36]. The density was set to ensure that the calculated scattering coefficient was consistent with
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real smoke [37] and the absorption coefficient was set to a small value [38,39]. The scattering
coefficient and anisotropy g were calculated by calling a Mie function. The refractive indexes of
smoke particle and tissue were selected according to [40,41]. The detailed simulation parameters
are listed in Table 1.

Fig. 1. Schematic of polarized light propagation in the medium.

Table 1. Simulation parameters

Parameters 0.2 µm 6.0 µm

Illumination Horizontal Linear Polarized Horizontal Linear Polarized

Detection Co-polarized and Cross-Polarized Co-polarized and Cross-Polarized

Wavelength 0.630 µm 0.630 µm

Density [37] 2 × 10 - 3particles/µm3 1 × 10 - 6particles/µm3

Anisotropy g 0.2052 0.7324

Scattering coefficient 0.1737cm−1 0.6230 cm−1

Absorption coefficient [38,39] 0.0100 cm−1 0.0100 cm−1

Refractive index (Smoke particle) [40] 1.57+ 0.4277i 1.57+ 0.4277i

Refractive index (Tissue) [41] 1.50 1.50

Number of photons 50000 50000

In the Monte Carlo calculations, the receiving plane was placed at different heights above the
tissue – corresponding to different medium depths – to capture the backscattered radiance. The
receiving plane had a size of 25×25 cm, with 100×100 sampling points, and the pencil beam
illuminant was incident perpendicularly at the central point of the plane. The 3D distributions
of linear polarized backscattered radiance in different types of medium at different heights,
2 cm, 4 cm, 6 cm and 8 cm, are shown in Fig. 2. For two media with particles of different
sizes, regardless of medium depth, the co-polarized component dominated the backscattering
radiance but decreased rapidly with increasing medium depth. Specifically, due to the small
scattering coefficient of the small-sized particles, the probability of photon-particle interactions
was low, and most photons were detected after being reflected directly by the object. Therefore,
the backscattered co-polarized radiance was high and the cross-polarized radiance remained
low. The scattering coefficient and the probability of photons-particle interactions increased
for large-sized particles, and photons gradually lost their initial polarization state and became
randomly polarized. The difference in radiance between co-polarized and cross-polarized
channels decreased, especially when the depth of the medium exceeded the mean free path of
photon transmission.
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Fig. 2. Radiance of polarization channels at different heights in the medium with (a)
small-sized particles (0.2 µm) and (b) large-sized particles (6.0 µm). The radiance of the
brightest central region is marked in each subgraph.
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Considering real scenarios, with a size distribution of particles within surgical smoke, we
carried out a simulation for a polydisperse medium [42], and assumed that the particle size
followed a Gaussian distribution, with a range set to match surgical smoke particle sizes. The
detailed simulation parameters are listed in Table 2. The distribution of particle sizes and the
radiance of orthogonal linear polarization channels are shown in Fig. 3. We could conclude that,
the particles polydispersity affects the contrast of orthogonal linear polarization channels, and
the degree of impact was determined by the particle size distribution and weight. However, the
co-polarized component still dominated the backscattering radiance.

Fig. 3. Backscattered radiance of linear polarization illumination in a polydisperse medium:
(a) the distribution of the particle sizes and the radiance of (b) co-polarized and cross-polarized
channel at different heights.

Table 2. Simulation parameters

Parameter Value

Mean diameter [34,35] 3.0 µm

Coefficient of variation of the Gaussian distribution [34,35,42] 0.3

Number of sampled points in the sphere size distribution [42] 1001

Illumination Horizontal Linear Polarized

Wavelength 0.630 µm

Anisotropy g 0.7253

Scattering coefficient 0.7282 cm−1

Absorption coefficient [38,39] 0.0100 cm−1

Refractive index (Smoke particle) [40] 1.57+ 0.4277i

Refractive index (Tissue) [41] 1.50

Number of photons 50000

Depth of smoke layer 2 cm, 6 cm

From the simulation results we can conclude that, for the linear polarization imaging:
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i) the co-polarized channels consist of large amounts of polarization-maintaining light from
the superficial layers;

ii) the cross-polarized channels eliminate dominance of radiance from superficial layers,
which means the cross-polarized channel has a certain dehazing effect, and this is consistent
with the conclusions in Ref. [23,25];

iii) at greater depths, co-polarized and cross-polarized channels have similar intensities.

2.4. Polarization difference for transmission estimation

For linearly polarized incident light and a pair of orthogonal (co-polarized and cross-polarized)
backscattered channels, the polarization difference calculation can be used to estimate parameters
of the degradation model. As was demonstrated in the previous section and summarized in Table 3,
the co-polarized channel was dominated by a polarization-maintaining component from smoke
superficial layers [28]. After multiple particle interactions during propagation into deeper layers,
the light had near-equal contribution in all polarization channels (including the co-polarized
and the cross-polarized channels) [43]. The cross-polarized channels reduced the radiance
from superficial layers and included a multiply scattered component. Therefore, compared with
co-polarized channels, cross-polarized channels contained relatively more radiance from deeper
smoke layers closer to the object.

Table 3. Backscattered light characteristics for linear polarization illumination

Illumination Detection Light component

Linear Linear (co-polarized) Polarization-maintaining photons+multiply-scattered photons

Linear Orthogonal (cross-polarized) Multiply-scattered photons

The polarization difference calculation was implemented to estimate the smoke component
and transmission rate of the medium. The polarization-based image degradation model for
co-polarized and cross-polarized states was rewritten as:⎧⎪⎪⎨⎪⎪⎩

Ico(x) = Jco(x)e−βτ(x) + Aco(∞)(1 − e−βτ(x))

Icro(x) = Jcro(x)e−βτ(x) + Acro(∞)(1 − e−βτ(x))
, (5)

When the incident light underwent multiple scattering to reach the object layer, it lost its initial
polarization state and became randomly polarized before being detected, therefore, the radiance
from the object, Jco(x) and Jcro(x) could be regarded as approximately equal (when the detection
distance approached the photon transport mean free path in the medium) [43] in Eq. (5). So that
polarization difference calculation could be written as:

Ico(x) − Icro(x) = Aco(∞)(1 − e−βτ(x)), (6)

Notably, Aco(∞) was a constant and was estimated from all the pixels of co-polarized channel,
in the presence of complete smoke component. Therefore, Aco(∞) should be maintained in the
polarization difference calculation. Then the transmission rate of the degradation model could be
estimated as:

t(x) = e−βτ(x) = 1 −
Ico(x) − Icro(x)

Aco(∞)
, (7)

A smoke removal result was reconstructed by doubling the radiance of the processed cross-
polarized channel because:

i) cross-polarized channels were less affected by the polarization-maintaining light as well as
the reflectance of the medium [23,25];
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ii) cross-polarized channels contained relatively more detailed information of the object (an
advantage of polarization-resolved imaging);

iii) in deeper layers, the contribution of co-polarized and cross-polarized channels was nearly
equal.

In summary, the restored image could be calculated as:

J(x) = 2 · Jcro(x) = 2 ·
Icro(x) − Acro(∞)

e−βτ(x)
+ 2 · Acro(∞), (8)

Note that even if the smoke is inhomogeneous, the difference of pixels under different optical
depths is still reflected in the polarimetric imaging results and polarization difference results.
The processing of each pixel is entirely independent and the estimated transmission rate t will
vary corresponding to the smoke density, so our model can handle inhomogeneous smoke.

2.5. Estimation of ambient light with infinite optical depth

The estimation of Aco(∞) and Acro(∞) can be contrasted with outdoor haze imaging methods,
where a pixel is selected from a background area containing no visible object, representing an
infinite depth point, i.e. an estimate of the air-light at infinity. However, in biomedical imaging
where the tissue is generally close to the camera, there may be no areas with infinite optical depth
to estimate the ambient light at infinity. Therefore, the algorithm in [44] was adopted to estimate
the parameter A(∞).

In brief, a specific color at different positions within the image will be affected by haze to
varying degrees, and its red-green-blue radiance constitutes a linear distribution called a ‘Haze
Line’. Pixels in a hazy image can be modeled using these haze-line priors in red-green-blue
space that all intersect with the air-light value at infinity [44].

The method contains three main steps [44]:
i) converting the RGB image into an indexed image with 64 clusters (64 typical color values);

ii) projecting the color clusters onto three different 2D RGB planes, RB, GB, RG;

iii) using a Hough transform to vote for the location of the air-light in 2D RGB planes.

2.6. Color information

Color is affected by haze to varying degrees, and it is important to estimate the transmission rate
t per pixel in R, G, B channels respectively, instead of using a single unique value per pixel for
three channels. For example, if haze-free red pixels are affected by smoke, the intensities of the
G and B channels are more significantly affected compared to the R channel and therefore, the
transmission rate for the G and B channels must be lower than for the R channel [45].

3. Experiments

3.1. Experiment setup

The Polarization State Analyzer (PSA) for the experiments was a LUCID-TRI050S integrated with
Sony polarized sensor IMX250MYR. With an intuitive graphical user interface, (Arenaview), four
polarimetric channels, 0°, 45°, 90°, 135°, could be captured in color simultaneously. In addition,
a linear polarization luminant was used as the polarization state generator (PSG) and consisted of
a LED light source GI-0604 and a calibrated linear polarizer. The polarization setup is shown
in Fig. 4. All the equipment was placed in a container with a black foam cover, and a fogger
AB-900 could inject a controllable level of fog (from heated fluid) into the container through
a pipe to simulate the surgical smoke environment. The created smoke contained multi-size
particles and had a diameter mainly ranging from 1-5 µm [46]. A series of polarimetric images
that varied with the concentration of the smoke were collected.
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Fig. 4. The polarization setup

3.2. Results and analysis

Before smoke injection, the incident linear polarized light was calibrated to the sample and
smoke-free ground truth reference data was captured. Since the sample signal was completely
obscured by the smoke, the polarimetric images of the mixed medium were collected at regular
intervals (different smoke concentrations). A comparative experiment with a SpyderCheckr
sample for different smoke concentrations is shown in Fig. 5, including examples of estimating
the ambient light with infinite optical depth (Fig. 5(g-i)). A pig kidney and liver were chosen
as ex vivo tissue samples, as shown in Fig. 6. A pair of orthogonal polarimetric images with
1134× 917 pixels took an average processing time of 5.5 seconds using MATLAB R2019a on a
Windows laptop with Intel Core i7-9750H and 16GB RAM. The experimental results show that
the polarization-based smoke removal method reduced the effect of smoke on image quality in
near real time for different smoke concentrations and samples.

Three prior-based dehazing methods were also implemented for comparison, including methods
based on a dark channel prior (DCP) [15], haze line prior (HLP) [19] and color attenuation prior
(CAP) [20], with different sample surfaces. Both the co-polarized and cross-polarized images
were processed by different dehazing methods, as shown in Fig. 7. According to our tests, these
methods have similar processing times.

It can be concluded that all methods can reduce the impact of smoke on image quality.
After comparing the dehazing result with the ground truth, we conclude that DCP method
underestimate the transmission parameters, leading to a very low luminance, oversaturation effect
and information loss, as shown in Fig. 7(c). The HLP method had a better dehazing performance,
as indicated by Fig. 7(d), but compared to the ground truth, the restoration of the original color
was not accurate. The CAP method overestimated the transmission parameters so that the smoke
was not completely removed, and for the liver sample it was not accurate enough to restore the
color, as shown in Fig. 7(e). Our polarization-based method (POL) reduced the impact of smoke,
as indicated in Fig. 7(f), and through the comparison of the SpyderCheckr scenario, the original
color was restored very well.

The Peak Signal-to-Noise Ratio (PSNR) [47], the Structural Similarity Index (SSIM) [48],
the CIEDE2000 [49] were adopted to quantitatively evaluate the dehazing results, as shown in
Table 4, for reference. The PSNR index was defined by Mean Square Error [47] and the SSIM
index was determined by three factors, luminance, contrast and structure [48]; the higher the
values of these two indicators, the better the image quality. The CIEDE2000 could evaluate color
difference of dehazing results and ground truth [49], for color restoration performance, the lower
the value of this indicator, the better the color restoration performance. We manually selected the
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Fig. 5. Comparison of different smoke concentrations (levels 1–5, where level 1 was
extremely heavy smoke, level 3 was moderate and level 5 was mild concentration) with
SpyderCheckr: (a) co-polarized smoke images, (b) cross-polarized smoke images, (c)
polarization difference images, (d) estimated transmission maps, (e) smoke removal output
images, (f) ground truth. (g-i) Examples of ambient light estimation with infinite optical
depth (diamond) for level 2 smoke in different indicated color spaces.
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Fig. 6. Comparison between different smoke concentrations for tissue samples (kidney and
liver): (a) co-polarized smoke images, (b) cross-polarized smoke images, (c) polarization
difference results, (d) estimated transmission maps, (e) smoke removal output images, (f)
ground truth.

pixels of the sample area and performed quantitative evaluation so as to reduce interference from
the background. From these values we concluded that different methods usually have different
performance in different scenarios. However, sometimes the conclusion from qualitative and
quantitative analysis were not consistent, for example, we qualitatively considered that CAP did
not have a good smoke removal performance on the co-polarized channel of the SpyderCheckr and
liver sample because the parameters were overestimated and the color restoration was inaccurate,
as shown in Fig. 7(e), but it had the best PSNR and SSIM results.

However, in addition to restoring the image visibility, for biomedical images, the restoration
of the original polarization properties of the samples can be further applied for biomedical
information processing and disease detection. Therefore, it may be useful to restore the original
polarization information of the samples as far as possible while reducing the influence of surgical
smoke. Muller matrices can characterize the sample’s polarization properties and evaluate the
accuracy of polarization information restoration. However, it needs multiple measurements to
obtain and is not suitable for dynamic smoke scenarios. Therefore, the degree of polarization
(DOP), one of a number of possible parameters describing the polarization information of the
samples, was adopted and calculated using Eq. (9). The restored DOP results are shown in Fig. 8
and quantified in Table 5. In the SpyderCheckr scenario, the DCP and HLP method were not
accurate enough for color recovery, which would affect the balance between polarization channels
and therefore affect the DOP restoration. The CAP method had limited ability to recover DOP
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Fig. 7. Comparison of dehazing results between different methods: (a) haze images, (b)
ground truth, results processed by (c) DCP, (d) HLP, (e) CAP, (f) POL.

Table 4. Quantitative evaluation of different dehazing methods: SSIM and PSNR (the higher the
better), CIEDE2000 (the lower the better)

Surface Type & Channel Index DCP HLP CAP POL

SSIM 0.9804 0.9855 0.9891 0.9882

SpyderCheckr Co PSNR 56.6853 57.8997 59.0408 58.7155

CIEDE2000 0.1115 0.0951 0.1018 0.0950

SSIM 0.9933 0.9948 0.9941 0.9942

Kidney Co PSNR 61.3353 62.2904 61.7940 61.8730

CIEDE2000 0.1153 0.1153 0.1155 0.1151

SSIM 0.9981 0.9974 0.9985 0.9958

Liver Co PSNR 66.5942 65.3429 67.4119 63.4221

CIEDE2000 0.0137 0.0137 0.0137 0.0137
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information. Compared with the qualitative and quantitative results, our POL-based method had
the best DOP restoration performance.

DOP =
Ico(x) − Icro(x)
Ico(x) + Icro(x)

, (9)

However, our method also has shortcomings, since cross-polarized radiance can inevitably be
affected by smoke, especially at high concentrations where the estimated smoke information from
polarization difference calculations is lower than expected, which in turn leads to overestimation
of the transmission parameters. Therefore, in the case of the environment with high smoke
concentration, our experimental results still retained some smoke. On the other hand, in real
surgical smoke scenarios, the concentration of smoke would not be expected to reach that
level [1], so the proposed polarization-based smoke removal method remains applicable. In
addition, the proposed quantitative evaluation indexes often evaluate from a certain aspect,
and cannot comprehensively evaluate the smoke removal performance, so they are not entirely
suitable for our scenario. Specifically, PSNR only considers the absolute difference and is
not sensitive to structural information; SSIM is partially determined by a luminance factor,
however, in our surgical smoke scenario, the captured smoke images have higher luminance than
processed images, so they have higher scores in luminance factors than processed images. This
is confounding because the processed images should have a higher SSIM score than the smoke
images, and it is therefore important to better balance the weights of these three SSIM factors, or
to develop other quantitative evaluation indexes for our scenario.

Fig. 8. Comparison of restored DOP results between different methods: (a) the DOP of
haze images, (b) the DOP of ground truth, results processed by (c) DCP, (d) HLP, (e) CAP,
(f) POL.
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Table 5. Quantitative evaluation of DOP results of different methods: SSIM and PSNR (the higher
the better), CIEDE2000 (the lower the better)

Surface Type Index DCP HLP CAP POL

SSIM 0.9810 0.9812 0.9819 0.9864

SpyderCheckr PSNR 56.3261 56.4478 56.5600 57.7247

CIEDE2000 0.2244 0.2040 0.1962 0.1949

SSIM 0.9641 0.9649 0.9555 0.9661

Kidney PSNR 53.9179 54.0238 53.0454 54.1689

CIEDE2000 0.3771 0.1636 0.1635 0.1635

SSIM 0.9654 0.9707 0.9343 0.9758

Liver PSNR 54.0115 54.7181 51.3724 55.5464

CIEDE2000 0.2821 0.2469 0.2389 0.2384

4. Conclusion

In endoscopic/laparoscopic surgery, image quality can be severely degraded by surgical smoke,
which reduces the visibility for the surgeons and introduces errors when using image processing.
A simple, real-time, polarization-based smoke removal method for surgical images was proposed.
Unlike the outdoor dehazing problem, we redefined the parameters of transmission rate and
ambient light with infinity and proposed the polarization-based degradation imaging model.
Experiments with a calibrated polarization setup, for different smoke concentrations, and
different sample surface materials were conducted. Qualitative and quantitative analysis and
comparisons with alternative methods showed that our method can effectively reduce the
degradation of biomedical images caused by surgical smoke and partially restore the original
degree of polarization of the samples.
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